



## ANGIOGENESIS INHIBITION ASSAY

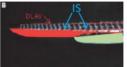
**Biobide** is a biotechnology company offering drug discovery services to Pharma, Biotech, Chemical, Cosmetic and Nutraceutical companies. Our services are based on the **zebrafish model** and the capacity to offer highly efficient tailor made assays.

The zebrafish model is gaining relevance in pre-clinical trials due to its small size, transparency, ease to manipulate and rapid development. This model has a high genetic homology with humans (over 85%) as well as important parallels in organogenesis and functional mechanisms.

Biobide has developed a method to detect the capability of a compound to inhibit angiogenesis as part of efficacy pharmacology studies. Angiogenesis, the development of new blood vessels from existing vasculature, is essential in normal developmental processes and in numerous pathologies, including diabetic retinopathy, psoriasis and tumor growth and metastasis. Thus, the molecular dissection of angiogenic signaling is clinically relevant.

In the zebrafish embryo, blood flow begins at ~ 24 h postfertilization (hpf) and shortly after, the angiogenic vessels that perfuse the trunk of the embryo (intersegmental vessels) sprout from the vasculogenic vessels (dorsal aorta (DA) and posterior cardinal vein (PCV). Furthermore, major molecular pathways regulating angiogenesis in mammalian systems (vascular endothelial cell growth factors, fibroblast growth factors, ephrin receptors, angiopoietins, etc...) are conserved in zebrafish.


Angiogenic vessels are easily monitored, thus, making them suitable for identification of angiogenesis inhibitors. In our automated assay, a transgenic zebrafish line with fluorescent (cop-GFP labelled) blood vessels (Figure 1) is used in order to facilitate the visualization and analysis of the intersegmental vessels (Figure 2).








**Figure 1**. Bright field (left) and fluorescent (right) images of 48 hours post fertilization (hpf) embryos. Endothelial cell-specific expression of cop-GFP is driven by flk1 promoter.







**Figure 2**. The figure shows a whole embryo (A) and the part of the trunk in which vessels are quantified. (B) Same picture but without the head and the yolk, (most bulging part). Intersegmental vessels (IS) are shown in blue and DLAV in red.

## METHOD DESCRIPTION

The method consists on the following steps:

<u>Treatment</u>: 24 hpf embryos are dispensed 1 per well in a 96 well assay plate. Then, the test compounds at the desired concentration are dispensed into each well of the assay plate containing the embryos. Depending on the previous knowledge and the number of products to test, different assays are proposed:

- Concentration-response curves: an initial curve of six concentrations is proposed (0.01, 0.1, 1, 10, 30 and 100 μM). For IC50 calculation, a second appropriate curve will be done if necessary.
- Screening: only one concentration (around 20-30  $\mu\text{M})$  per compound will be tested.

<u>Incubation</u>: the test plate is incubated for 24 h.

<u>Data collection</u>: after 24 hours of treatment, embryos are anesthetised with tricaine to prevent their movement and the assay plate is placed in the microscope where pictures are taken.

<u>Image analysis</u>: Image analysis is done semi-automatically in two different steps:

- First step: the fluorescent image is processed automatically to determine a region of interest containing the tail of the embryo. Fluorescent area present in this region is measured and when significant statistical differences are found between the means of control and treated embryos, next step in the analysis is carried on.
- Second step: two different parameters are manually quantified from the images obtained, the total number of intersegmental vessels and the number of intersegmental vessels that are complete.





AG1478 20 μM

## **VALIDATION RESULTS**

To validate the angiogenesis assay, the effect of 18 compounds with capacity of inhibiting angiogenesis and 10 compounds lacking effect in previous angiogenesis screening were tested (Table 1, Figure 3, 4). For this purpose, a concentration response curve  $(0.01, 0.1, 1, 10, 30 \text{ and } 100 \,\mu\text{M})$  was developed. Furthermore, IC50 value was calculated for the positive compounds detected in the first round.

 $\begin{tabular}{lll} \textbf{Table 1.} & \textbf{Summary} & \textbf{of the results} & \textbf{obtained during the validation of} \\ \textbf{antiangiogenic assay} & \textbf{obtained during the validation of} \\ \textbf{obtained during the validation} \\ \textbf{obtained duri$ 

| COMPOUND                                    | TARGET                                                   | ANGIOGENESIS<br>INHIBITION | TOTAL VESSELS | COMPLETE            | CONCENTRATION (µM) |
|---------------------------------------------|----------------------------------------------------------|----------------------------|---------------|---------------------|--------------------|
| KRN633                                      | VEGFR 1-2 and                                            | VED                        | 0.035         | VE\$\$EL\$<br>0.026 | _                  |
|                                             | 3                                                        | YES                        |               |                     |                    |
| ZD6474<br>(Vandetanib)                      | VEGFR-1-2-3<br>and EGFR                                  | YES                        | -             | 1                   | 100                |
| Sunitinib malate                            | VEGFR-1-2-3,<br>PDGFR0, o-<br>kit,FLT3,CSF1-R<br>and RET | YES                        | 2.6           | 1.7                 | -                  |
| Sorafenib Tosylate                          | VEGFR-2-<br>3,PDGFR, c-kit<br>and Raf                    | YES                        | 0.78          | 0.53                | -                  |
| PD173074                                    | FGRF1 and 3                                              | YES                        | _             | _                   | 100                |
| PD166866                                    | FGFR1                                                    | YES                        | 43.9          | 16                  |                    |
| AG-1296                                     | PDGFRα and β c-kit receptor.                             | YES                        | -             | -                   | 20                 |
| PDGFR tyr kin<br>Inhibitor                  | PDGFR α and β                                            | YES                        | 0.19          | 0.14                | -                  |
| Tie 2 Kinase<br>Inhibitor                   | Tie 2                                                    | NO                         | -             | -                   | -                  |
| Bosutinib                                   | Abl and Scr                                              | YES                        | _             | _                   | 50                 |
| AG 1478                                     | EGFR                                                     | YES                        | 22.8          | 13                  | _                  |
| Indirubin-3'-oxime                          | Cyclin-<br>dependent<br>kinase and GSK-<br>3β            | YES                        | 18.3          | 4.2                 | -                  |
| Fumagillin                                  | Methionine<br>aminopeptidase                             | NO                         | -             | -                   | -                  |
| NS-398                                      | Clolooxigenase<br>2(COX-2)                               | YES                        | -             | -                   | 30                 |
| HIF-1 Inhibitor                             | HIF-1                                                    | NO                         | _             | -                   | _                  |
| NVP-BEZ235                                  | PI3K y mTor                                              | YES                        | _             | -                   | 10                 |
| 2-Methoxyestradioi                          | Endothellal cells                                        | YES                        | 30.6          | 10.2                |                    |
| Paclitaxel                                  | Antimicrotubule<br>agent                                 | YES                        | -             | -                   | ?                  |
| Tyrphostin AG490                            | JAK-2                                                    | NO                         | _             | -                   | _                  |
| Bestatin                                    | Aminopeptidase                                           | NO                         | _             |                     | _                  |
| Thioacetamide                               | -                                                        | NO                         | _             | -                   | _                  |
| E64                                         | Cysteine proteases                                       | NO                         | -             | -                   | -                  |
| O6-benzylguanine                            | O(6)-<br>alkylguanine<br>DNA<br>alkyltransferase         | NO                         | -             | -                   | -                  |
| Cyclosporine A                              | Calcineurin                                              | NO                         | -             | _                   | -                  |
| 4-Methylpyrazole<br>hydrochloride           | Alcohol<br>dehydrogenase                                 | NO                         | -             | -                   | -                  |
| N-Acetyl-L-cystelne                         | Antioxidant                                              | NO                         | -             | -                   | -                  |
| Amlodarane<br>hydrochloride                 | Non-selective ion<br>channel blocker                     | NO                         | -             | -                   | -                  |
| CIs-<br>Diammineplatinum(ii<br>) dichloride | Forms cytotoxic adducts with DNA                         | NO                         | -             | -                   | -                  |

AG1296 20 µM PD173074 200 µM

**Figure 3.** Figure shows pictures of 48 hpf embryos treated with the indicated compounds as representatives of the phenotypes found.

Figure 4. CV values for the complete vessels parameter is always lower than 15% with one exception (<20%) .

| v |  |
|---|--|

| COMPOUND            | CONCENTRATIOON<br>TESTED(µm) | CV TOTAL VESSELS |  |
|---------------------|------------------------------|------------------|--|
| KRN633              | 0.03                         | 13.6             |  |
| ZD6474              | 100                          | 13.9             |  |
| Sunitinib malate    | 2                            | 2.2              |  |
| PD173074            | 200                          | 12.2             |  |
| PD166866            | 30                           | 12.4             |  |
| AG-1296             | 20                           | 2.4              |  |
| Bosutinib           | 60                           | 0.7              |  |
| AG1478              | 20                           | 11.2             |  |
| Sorafenib Tosylate  | 1                            | 3.3              |  |
| Indirrubin-3`-oxime | 10                           | 19.3             |  |
| NS-398              | 40                           | 3.2              |  |
| NVP-BEZ235          | 30                           | 4.0              |  |
| 2-Methoxyestradiol  | 10                           | 2.6              |  |

Compounds with known antiangiogenic effect S

Specificity: 100%

Compounds with lacking antiangiogenic effect

Sensitivity: 83%

✓ The antiangiogenic activity of a compound can be studied through this automated method since 100% specificity and 83% sensibility was obtained after the validation.