

OBJECTIVE

To optimize cost and time of assays for PRESCREENING evaluation of effects on aquatic organisms based on **OECD** guidelines

Setting up aquatic toxicity testing using zebrafish, daphnia and algae

I. Iturria, A. Alday, O. Holgado, I. Irijalba, A. Muriana, A. Alzualde Biobide, San Sebastian, Spain

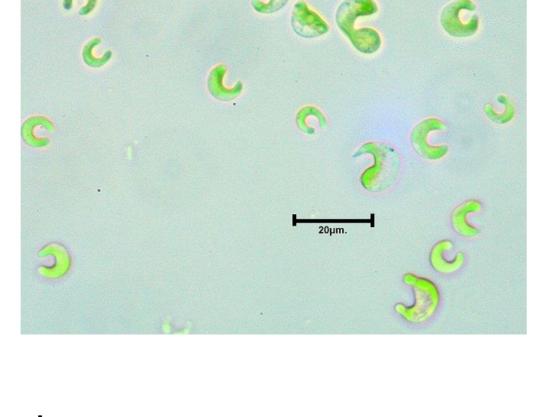
INTRODUCTION

Industries are responsable of collecting information on the properties and the uses of substances that they manufacture or import at or above one ton per year. They have to make an environmental hazard and risk assessment presented by the substance. The OECD Guidelines are a tool for assessing the potential effects of chemicals on human health and the environment. Accepted internationally as standard methods for safety testing, the Guidelines are used by professionals in industry, academia and government involved in the testing and assessment of substances.

Companies request miniaturized version of these guidelines that allows pre-screening of hazard and risks related to the substances in order to discard the ones that display toxicity in early phases of development.

In order to prevent the deterioration of the aquatic environment caused by chemicals, fast and cost/time-effective screening assays are needed in the early discovery phases of industries to assess the effects of chemicals candidates in the environment. In this case, aquatic toxicity high throughput screening assays based on OECD guidelines are being developed as an advantageous prior step to later phases of discovery, fulfilling the 3R principles at the same time.

High-Throughput Alga Microassay


Scaled down version of OECD 201

Test species: P. subcapitata

Endpoint: Cell growth inhibition

Test design

- ✓ Reduced sample and alga volume
 - 96 wells microplate
 - 10 test concentrations per compound
- ✓ Minimal handling for Data acquisition
 - One plate per compound
 - Fluorescence on Plate reader
- ✓ Automated data acquisition and analysis
 - Integrated data analysis workflow
 - NOEC, LOEL, IC50 determination

Methodology

Enhanced FET Acute Toxicity Assay

Based on OECD 236

Test species: Zebrafish (*D. rerio*)

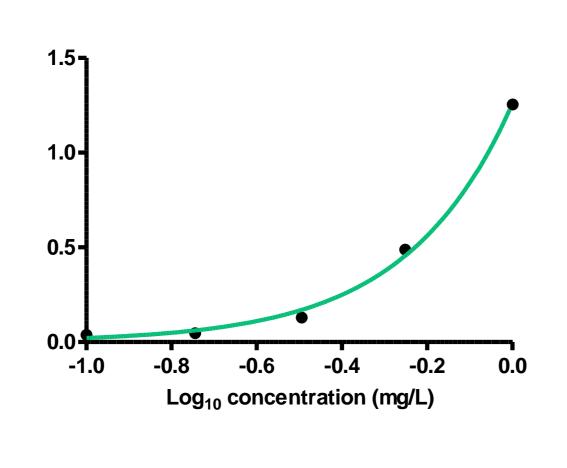
Endpoint: Mortality + Morphological alteration

Test design

✓ Optimized plate layout

- 24 well microplate
- 5 embryos per well, 3 wells per condition
- 8 test concentrations per compound
- One plate per compound
- ✓ Additional sublethal endpoints considered
 - Morphological alterations

endpoints Head shape alteration, Jaw Head Malformations Morphology, Microphtalmia


Morphological alteration

Heart Malformations	Heartbeat alterations, Irregular shape, Edema	
Body shape Malformations	Notochord morphology, Somite Morphology, Curvature, Length	
Yolk Malformations	Irregular shape, Yolk opacity, Edema Fins morphology, Hatching delay, Necrotic tissue,	
Others		

Determination of IC₅₀

Potassium dichromate

OECD Reference Toxicant

 $IC_{50} = 11.8 \text{ mg/L}$

- Increased efficiency in sample processing
- ✓ Cost-effective method of aquatic toxicity assessment
- ✓ Production of relevant information for rapid decisionmaking process

Case study

Determination on EC₅₀ and LC₅₀

Difenoconazole

Fungicide

Concentratio n µM	Dead	Affected
0.1	20%	20%
1	10%	10%
10	30%	100%
100	100%	100%
1000	100%	100%

Lethality

Figure 2: Results from range-finding test

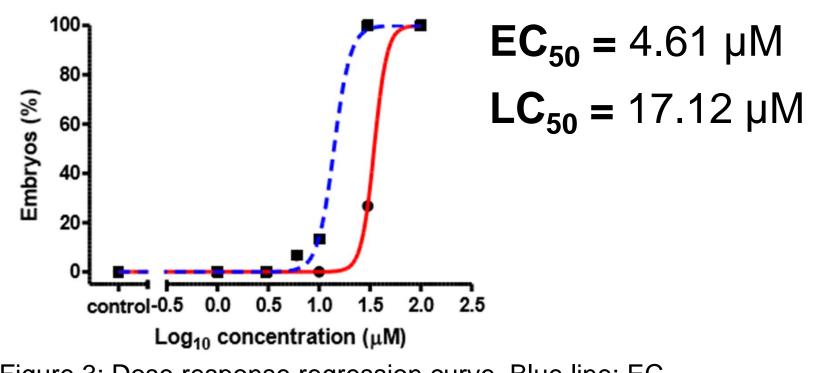


Figure 3: Dose response regression curve. Blue line: EC₅₀ Red line: LC₅₀

Zebrafish embryos are exposed to eight concentrations selected from the range finding test results. EC₅₀ value is obtained considering morphological alteration and mortality (blue line) while standard LC₅₀ calculation is only based on mortality data.

- ✓ Higher sensibility than FET in toxic effect assessment
- ✓ Increased substance testing capacity
- ✓ Minimized use of testing animal (3Rs)

Work in progress

- Alga Microassay validation with an array of reference toxicants
- Computer image analysis for the evaluation of mortality and morphological alterations on Enhanced FET Acute Toxicity Assay
- Development and validation of aquatic toxicity assay on *Daphnia magna* with continuous video tracking on a multi-cell exposure system
- Data analytics, reporting and integration platform for the integrated evaluation of aquatic toxicity

