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ABSTRACT: Unpredicted human safety events in clinical trials for new drugs are costly in
terms of human health and money. The drug discovery industry attempts to minimize
those events with diligent preclinical safety testing. Current standard practices are good at
preventing toxic compounds from being tested in the clinic; however, false negative
preclinical toxicity results are still a reality. Continual improvement must be pursued in the
preclinical realm. Higher-quality therapies can be brought forward with more information
about potential toxicities and associated mechanisms. The zebrafish model is a bridge
between in vitro assays and mammalian in vivo studies. This model is powerful in its
breadth of application and tractability for research. In the past two decades, our
understanding of disease biology and drug toxicity has grown significantly owing to
thousands of studies on this tiny vertebrate. This Review summarizes challenges and
strengths of the model, discusses the 3Rs value that it can deliver, highlights translatable
and untranslatable biology, and brings together reports from recent studies with zebrafish
focusing on new drug discovery toxicology.
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■ INTRODUCTION

In pharmaceutical drug discovery, the number of compounds
discovered in early target- or phenotypic-based screens for
drug candidates far outweighs the number that advances as
clinical candidates, of which relatively few to none progress to
clinical trials.1−3 This nonclinical attrition is the result of
diligent studies conducted in animal models designed to
demonstrate bioavailability, efficacy, and safety. During this
early phase, depending on the reporting source, between 40
and 80% of the compounds are halted in development due to
safety concerns.4,5 The current practice serves well to provide
many safe molecules to clinical studies,6 yet surprising clinical
toxicities are still a reality. An analysis of a pharmaceutical-
industry-wide preclinical-to-clinical database7 showed that
overall, the specificity of preclinical toxicology studies is
good (>80%), reflecting a low level of false positive predictions
of toxicity. However, the sensitivity is low (<50%), reflecting a
high false negative rate meaning unpredicted human safety
events.
The later they occur during drug development, the more

costly unpredicted safety events are in terms of human health
and money. Improving preclinical testing practices could
mitigate such losses. Advances in investigative toxicology,
which aims to derisk safety and reveal toxic mechanisms of
discovery candidates, have provided paths toward such
improvement.8,9 Many of these include platforms that are
considered alternatives to animal models in line with the 3Rs
philosophy toward animal research.10,11 These include stem
cells and other cell cultures,12,13 3D tissue models,14−16 organs
on chips,17 in silico prediction,18 and machine learning19 as
well as humanized chimeric mouse models for more trans-
latable data20 and nonmammalian animal testing in animals
like the round worm Caenorhabditis elegans21 and teleost fish
Danio rerio (zebrafish)22−27 (Figure 1).

Low sensitivity for clinical safety issues is the primary focus
of efforts to improve preclinical toxicology testing, but
mammalian models are also laborious, costly, and fraught
with ethical questions concerning animal testing,28,29 affording
other motivations for developing and implementing alternative
assays. Regulatory requirements for new drug discoveries are
rigorous; thus, acceptance of alternative toxicology assays by
government agencies will rely on well-established predictivity
of clinical toxicity.30 Predictivity of an alternative assay can be
evaluated independently for each human biological system,
organ, tissue, or cell type. This Review brings together
literature reporting on potential and actual applications of
zebrafish in drug discovery toxicology, sorted into sections
based on organ or biological system.

■ ZEBRAFISH PROVIDE 3RS VALUE TO DRUG
DISCOVERY TOXICOLOGY

The 3Rs, replacement, reduction, and refinement of animal
studies in research,10,31,32 has evolved, over time, along with
philosophies underlying the use of animals, regulatory
directives, and new technologies, the latter of which can be
beneficial to science as well as animal welfare. Among new
approaches, the zebrafish has arisen as a popular alternative
animal model. According to the European Commission
Directive from 2010, experiments with the earliest life-stages
of some animals are not regulated as animal studies; for
zebrafish, independent feeding, which begins around 5 days
post fertilization (dpf), is considered the first stage subject to
regulation for animal experimentation. Therefore, work with
zebrafish embryos/larvae under 5 dpf can be considered an
alternative to animal testing. Some controversy exists around
this; there are different interpretations of criteria by national
and regional authorities, especially around 120−144 h
postfertilization (hpf). Supporting the 5 dpf transition,
according to a review of the literature and available data,33

where they include criteria such as yolk consumption, feeding,
and swimming behavior, independent feeding becomes evident
at 120 hpf.

■ HOW THE 3 RS APPLY TO ZEBRAFISH

• Replacement: Zebrafish assays using larval zebrafish
could be used to replace some animal toxicity studies,
first establishing that the larval zebrafish is a relevant
model for the system (target, gene, pathway, mechanism,
tissue, organ, etc.) with validation studies.

• Reduction: As a first-tier model for toxicity, zebrafish
larvae could be used to identify toxic drug candidates,
allowing safer molecules to be tested in mammalian
models. In the end, this would ultimately reduce the
number of animals used in testing.

• Refinement: The embryonic and larval zebrafish model
offers refinement to animal study design, because the
embryos are fertilized externally and are transparent
through the early days of life. This allows for noninvasive
observation of toxicities and perhaps recovery.

■ CHALLENGES OF ZEBRAFISH AS AN ANIMAL
MODEL

There are many reasons zebrafish have become a popular
laboratory animal, some of which that make them easy to work
with are described below. However, this model has several
deficiencies compared to mammalian models, making certain

Figure 1. General body plans of a larval (top) and an adult (bottom)
zebrafish indicating organ locations. Note the relative lengths of the
two stagesapproximately 5 days post fertilization for the larva and 3
months for the adult. In body volume, the larval fish is hundreds of
times smaller than the adult. Cartoon used with permission from
authors of ref 46 and The Journal of Clinical Investigation, copyright
2012.
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aspects of toxicology cumbersome to interrogate in zebrafish
and raising yet unanswered questions about the translatability
of toxic potencies and affected tissues. For example, the most
popular method for dosing embryonic and larval zebrafish is
through solubilizing chemicals in water (in-water dosing). This
poses two issues; one is that chemicals with poor solubility
and/or absorption need to be injected into fish to gain
sufficient exposure, limiting the pool of chemicals that can be
tested in high-throughput screening to those that have good
water solubility; the second is that in-water dosing may yield
unique exposures compared to typical mammalian routes, as
the fish are literally immersed and/or swimming in the
treatment solution. How this second issue is manifested, and
impacts the translatability of results, needs interrogation and
likely varies depending on the biological system and chemicals
being investigated.
One of the main strengths of zebrafish as a model organism,

their small size, also poses challenges. Nonclinical toxicology
studies are relied upon to predict a therapeutic window
between efficacious and toxic exposures, guide clinical dosing
upper limits based on those exposures, and deliver absorption,
distribution, metabolism, and excretion (ADME) data. Toxic
in-water dosing levels generated from larval zebrafish studies
currently cannot be decidedly related to mammalian plasma
levels; more work is needed in this area and, like the questions
around unique exposures driven by in-water dosing, will likely
depend on the system being interrogated. Methods for
measuring plasma levels and ADME from larval zebrafish are
currently being pursued but are in their early stages.34,35

Finally, because of phylogenetic distance manifested in
anatomy and physiology differences, zebrafish will, in general,
generate less translatable data to clinical toxicities compared to
data from mammalian models. Strategic studies that employ
zebrafish to interrogate systems and chemicals that have the
highest likelihood of translatability will make the most of this
model. Beyond considering gene similarity, congruence of
cellular mechanisms, and comparable tissue biology, toxicology
studies with zebrafish need to consider the regenerative
capacity of the model. Zebrafish can regenerate multiple
tissues including the fin, brain, retina, spinal cord, and
heart.36,37 This regenerative capacity may impact translational
toxicity end points as has been demonstrated for the retina.38

■ ENVIRONMENTAL PARAMETERS AND
HUSBANDRY PRACTICES

An inherent advantage of zebrafish is their broad tolerance of
environmental conditions.39 This trait makes it possible to rear
and breed these animals for research using a wide array of
protocols. Accordingly, there are very few standards for
husbandry and management of the fish and their environment,
and conventional approaches have long centered around the
simple and straightforward goal of producing fish that are free
from visible disease, breed well, and survive at rates high
enough to complete experiments.40

While this flexibility has been a major driver in the growth of
the zebrafish model overall, it somewhat paradoxically limits its
adoption by the pharmaceutical industry. This is because other
animal models (mice, rats, rabbits, dogs) already accepted and
widely employed by drug companies for preclinical toxicology
studies are, by comparison, well-established models, with
commercially available standardized breeds/strains accompa-
nied by robust historical control data. This allows researchers
employing these models to exert a degree of control over a

number of variables (e.g., diet, genetic background, pathogen
status) that they are not able to achieve with fish. Without this
level of standardization, preclinical studies using fish may be
less reproducible and more challenging to undertake, especially
when they involve collaborations among multiple groups at
multiple sites.
The problem for the zebrafish model with respect to

experimental variability is twofold; the inaccurate and/or
incomplete reporting of husbandry and environmental
conditions is compounded by the overall lack of available
standards for researchers to follow. Reporting can be improved
now by using tools like ARRIVE guidelines,41 protocols.io,42 or
benchmark toxicity concentrations,43 but the overall lack of
standards for diet, health monitoring, and genetic maintenance
is a larger, more complicated puzzle to solve.44 Standards can
be developed through improving scientific understanding of
these factors to the point where broad recommendations for
standards can be made with confidence. At the same time,
commercial platforms are needed to support these efforts, for
example, in the production of specialized diets and genetically
defined and specific-pathogen-free (SPF) fish. At present, the
lack of this infrastructure is limiting.

■ VALUE OF ZEBRAFISH AS AN ANIMAL MODEL
Conserved vertebrate biology, ease of husbandry, high
fecundity, small size, rapid development, and transparent
young are some of the main attractions of zebrafish as an
alternative to mammals for toxicology studies. Although there
are some major differences related to anatomy and physiology
associated with an aquatic species, most zebrafish organs
perform the same functions as their human counterparts and
exhibit well-conserved physiology.45,46 Hundreds of adult
zebrafish, each only about 4 cm long, can be easily housed
in a standard aquarium, and there are several commercial
options for automated water quality control and feeding.
Successful mating of a single pair results in hundreds of
externally fertilized embryos that develop rapidly. During early
development, between 48 and 72 hpf, the development of most
organs is nearly complete, except for organs in the gastro-
intestinal (GI) tract. After 76 hpf, the liver, pancreas, and gut
are fully developed, and at 96 hpf, the GI tract is completely
developed.47 As at this stage they are small enough to fit into
individual wells of multiwell plates, toxicology can be
conducted on hundreds of whole organisms in a hand-held
platform using an amount of test article that would be required
to dose only one or two mice.
The transparency of young zebrafish allows for noninvasive

examination of organ development and toxic end points. This,
along with the ease of generating transgenic models, lends itself
to gene expression and cell-specific reporter assays, offering
powerful options for real-time in vivo studies of toxic
mechanisms.48 Biological effects of chemicals have been
studied extensively in the zebrafish.49,50 Exposure to xeno-
biotics is typically accomplished by simply dissolving a
chemical in the water after which phenotypic changes and/or
toxic effects can be monitored. Eight small molecules
discovered in zebrafish have been advanced into clinical
trials,51−58 illustrating the ability to move fundamental
discoveries from zebrafish to humans. The zebrafish genome
has been sequenced, and comparison to that of humans reveals
that 70% of human genes have a zebrafish homologue, and
82% of human genes associated with disease have a zebrafish
homologue.59 This allows for strategic application of this

Chemical Research in Toxicology Review

DOI: 10.1021/acs.chemrestox.9b00335
Chem. Res. Toxicol. XXXX, XXX, XXX−XXX

C

http://dx.doi.org/10.1021/acs.chemrestox.9b00335


model when homology is high, and molecular players can be
expected to interact with xenobiotics in translatable ways. For
the reasons above, there is a long history of zebrafish being
studied for genetics, cell biology, embryology, and environ-
mental toxicology. Most toxicological studies using zebrafish
have focused on environmental contaminants, but an
increasing number are emerging in the field of pharmaceutical
toxicology.48,60

■ LITERATURE SURVEY
The number of scientific publications mentioning zebrafish has
grown steadily (Figure 2); in 2018, there were well over 3000,

roughly 3 times the amount from 10 years ago. A similar trend
is observed in those publications around zebrafish toxicity, with
latest yearly reports being 4 times those from 10 years ago
(Figure 2).
These publications originate not only from universities,

hospital research centers, and regulatory or governmental
entities but also pharma, biotech, chemical, cosmetic, tobacco,
and nutraceutical companies. In recent years, the devel-
opmental, hepatic, and nervous systems are the main systems
being interrogated for toxicity using zebrafish (Figure 3).

■ SYSTEMS PHARMACOLOGY
Given that it is important to understand the capabilities and
limitations of mammalian models, the need is even greater for
animal models that are phylogenetically further removed from
humans like zebrafish.45 Interspecies translation will improve if

toxicologists move from an empirical to a mechanistic
approach, in which multiple components of a biological system
and their interactions can be monitored. Systems pharmacol-
ogy is such an approach, combining the strengths of systems
biology and pharmacometrics.47,61,62 It integrates modeling
and simulations with preclinical and clinical data. Combining
omics data with mechanistic and computational models can
improve prediction of toxicity. Data that contribute to basic
understanding of a toxicity can be gathered from in vitro
experiments; however, as organ toxicities are complex, in vivo
whole organism experiments, such as those using zebrafish
larvae, deliver more detail to the understanding of the system.
Combining all approaches will improve interspecies translation
by understanding biological processes in a model organism and
understanding how these systems differ among species.

■ EMBRYO TOXICITY
Zebrafish embryos are increasingly used for developmental
toxicity screening of candidate drugs and chemicals (Figure 3).
The zebrafish embryo model is already accepted as a validated
alternative assay to assess fish acute toxicity (OECD, No.
236),63 and currently, the zebrafish embryo is also being
explored as a potential replacement for one of the regulatory in
vivo mammalian embryofetal developmental toxicity studies in
view of the upcoming third revision of the ICH S5 guideline
on detection of the toxicity to reproduction for human
pharmaceuticals.64 In the 2015 final concept paper of this
guideline, it is stated that in vitro, ex vivo, and nonmammalian
in vivo assays are considered not to be the default approach for
developmental toxicity testing but might be considered for
regulatory purposes under limited circumstances.65 The 2017
draft of the revised guideline also includes a section on the
qualification of alternative test systems for regulatory accept-
ance.64 The zebrafish embryo is of particular interest, as effects
are assessed in a whole vertebrate organism during the entire
period of organogenesis, in contrast to other alternative assays
such as the whole embryo culture and embryonic stem cell test.
Additionally, zebrafish embryo assays are less time-consuming
and costly than the embryofetal development studies in rats
and rabbits. This increases throughput for pharmaceutical and
chemical companies, and if accepted as a regulatory test, this
could also lead to replacement and/or reduction of animal
studies in line with the 3Rs principle in animal research.
In general, concordance with the findings in mammalian

developmental toxicity studies is high, reaching up to 8566 or
87%67 in some laboratories, but false negative and positive
results are reported, and the results for the same compound
can vary substantially between laboratories.66−74 The latter can
be explained by the large diversity in protocols, such as study
design70 and calculation of the teratogenic index,66,67,71−74

indicating a clear need for harmonization of this alternative
assay when considering it for more than internal decision
making. There may be several other reasons for discordance
between laboratories and false negative/positive results in the
zebrafish embryo developmental toxicity assay, such as internal
concentration (compound uptake), metabolism, and species
differences in mode of action. Compound uptake has already
been addressed as a challenge earlier in this manuscript.
Although the chorion is removed by some groups to ensure
adequate exposure of the embryos,67 the former does not
appear to be the major cause of impaired uptake for most small
molecules.66 Solubility can be an issue for some compounds,
especially at higher concentrations,73 and the actual exposure

Figure 2. Publications on zebrafish for toxicology have grown over 4-
fold in the last 10 years.

Figure 3. Numerous systems can be interrogated for toxic end points
using zebrafish, and the number of publications is trending upward, as
indicated by these examples.
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of the zebrafish embryos may be overestimated when assessing
the medium concentrations without analysis of the internal
concentrations.68 Recently, efforts have been undertaken to
better predict embryotoxic medium concentrations in the
zebrafish embryo assay and link them with embryotoxic rat
plasma concentrations.75,76 As such, the assay can be refined
and its predictivity enhanced. Regarding metabolism, it is
generally accepted that the intrinsic biotransformation capacity
of zebrafish embryos is low up to 72 hpf, especially for
cytochrome P450 mediated reactions,77,78 and that exogenous
metabolic activation, e.g., by rat liver microsomes, increases the
sensitivity of the assay for some compounds.79 The latter
should be kept in mind when negative results are obtained in
the zebrafish embryo assay and the compound appears to be
highly metabolized in man. Also, species differences in the
mode of action of compounds need to be considered when
using the zebrafish embryo assay. For instance, ribavirin has
been reported as negative for zebrafish embryotoxicity but
causes malformations in mammals by accumulation of ribavirin
triphosphate in the erythrocytes.74 As zebrafish have nucleated
erythrocytes and no accumulation of ribavirin triphosphate can
occur, this may be a reason for the lack of malformations in
this species. Finally, although organogenesis in zebrafish is
well-characterized,80 the number of morphological end points
evaluated in the zebrafish embryo may need to be extended to
increase the sensitivity of the assay. The number of end points
that are evaluated in the currently used zebrafish embryo
protocols is much more limited compared to the exhaustive list
of external, visceral, and skeletal end points in the in vivo
mammalian embryofetal development studies.81

■ NEUROTOXICITY AND BEHAVIORAL ANALYSES

The zebrafish is being widely applied to study the mechanisms
and pathogenesis of neurological disorders and diseases,82−84

with great promise for drug discovery and toxicity testing in
this realm.85−87 The central nervous system of the zebrafish is
similarly organized to that of other vertebrates and is well-
described at multiple life-stages.88 The main structures, as well
as many principal subdivisions of the brain, are found in the
zebrafish,89 and behavioral studies have identified strong
associations between the functions of zebrafish and human
brain regions.90 One brain region that zebrafish do not have is
a neocortex, so they cannot be used to model cognitive
processes that rely on that region.91 Neurotransmitter systems,
such as dopamine, GABA, glutamate, noradrenaline, serotonin,
histamine, and acetylcholine, are present in zebrafish92−96 and
can serve as pharmacological and toxicological targets.
Locomotion is a complex behavior that requires an

integrated response of the brain function, nervous system,
and visual pathway. Given so, this behavioral pattern, in
conjunction with automatic tracking methods, is increasingly
gaining attention for its use in high-throughput screening of
neurotoxic compounds.97 Embryos show a basic swimming
capacity right after hatching, which is then refined to a beat
and glide mode of swimming after 4 dpf.98 The startle reflex in
response to tactile, visual, or auditory stimuli appears around 5
dpf.99 Adult zebrafish are able to display a varied repertoire of
complex behaviors including memory and learning, social
interactions, or prey hunting.89

The photomotor response assay, consisting of the automatic
tracking of larval movement in response to alternative
illumination conditions, is extensively used for the screening

Figure 4. Example results from a zebrafish locomotor assay for seizure liability. Drugs which interact through different mechanisms with the
nervous system evoke activity responses with different potencies. Each dot represents the maximum activity for a single larva. Red dots indicate that
the group average was significantly higher than that of the vehicle (0 mM) group; p-values are given in red. Copied with permission from ref 92 and
Elsevier, copyright 2019.
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of neurotoxic effects.85,100 The principle of this assay relies on
the specific patterns in response to the illumination transition.
The light−dark transition increases the locomotor activity,
while the dark−light transition decreases locomotor activity.
Convulsant drugs, such as the GABA receptor antagonists
pentylenetetrazol and picrotoxin cause a dose-dependent
locomotor activity increase,93,101,102 and antiepileptic drugs
such as diphenylhydantoin and valproic acid produce a
decrease in locomotor activity103 (for examples of data from
other neuronally active drugs, see Figure 4). The locomotor
effects induced by these drugs are similar to those observed in
rodents. In the case of some environmental hazards such as
flame retardants, this assay has shown a similar sensitivity and
value for predicting human neurotoxicity.104 However, non-
translatable results have also been reported; for instance,
exposure to venlafaxine showed an opposite effect to that
observed in rodents.105

The touch-evoked response test, which tracks behavior of
zebrafish larvae in response to a tactile stimulus given to the
head or tail, is an indicator of the integration of sensory and
motor function.99 For instance, larvae exposed to endosulfan
sulfate and fipronil showed a decreased reactiveness in this
assay.106,107 Assays based on the startle response to other

stimuli such as visual and acoustic stimuli have also been useful
to screen for neurotoxic effects.85,108,109

Likewise, adult zebrafish can be used to identify the anxiety-
like effects of new pharmaceuticals in preclinical screenings.
The most common models are the novel tank test (NTT) and
the light−dark test (LDT). The NTT principle is similar to the
rodent open field test. It relies on instinctive diving behavior in
response to an unfamiliar environment, which diminishes with
time.110 The LDT is based on fish scototaxis (innate
preference for dark vs light areas). This behavior is associated
with the natural tendency of wild zebrafish to prefer dark
environments to avoid detection by potential predators.111

Recent advances of zebrafish in the field of neurology show
great promise for future utility in studying disease. Neurologic-
disease-associated genes are conserved in the zebrafish,
enabling identification of molecular drug targets.112−114 The
ex vivo development of the zebrafish embryos allows
observation of these conserved proteins with fluorescent tags,
and the ease of genetic manipulation in the zebrafish has led to
the creation of several zebrafish neurologic transgenic models.
These models permit studies interrogating neurodevelopmen-
tal disorders such as autism,115 neuropsychiatric disorders
including depression and anxiety,116,117 and neurodegenerative
diseases such as Alzheimer’s and Parkinson’s disease.118−121

Figure 5. Representative ocular histology (top, 40×) and transmission electron microscopy (2000×) from larval zebrafish treated with vehicle (A +
C) or a chemotherapeutic discovery compound (B + D). The vehicle-treated eye (A) depicts normal retinal features with homogeneously spaced
cells. The retina from the compound-treated larva has decreased cell numbers in both the ganglion (GC) and inner nuclear (IN) layers (red arrows
in B), and the inner plexiform (IP) layer has a disorganized, vacuolated appearance. The electron microscopic images reveal evenly spaced nuclei in
the ganglion and inner nuclear layers for the vehicle-treated larva (C) but apoptosis (asterisk and red arrows), nuclear vacuolation/fragmentation
(red block arrows), and vacuolation, associated with cell loss, in the retinal layers of the compound-treated larva. Similar effects were found in
retinas of rats and dogs treated with that compound. NF, nerve fiber layer; OP, outer plexiform layer; PR, photoreceptor layer. Copied with
permission from ref 84 and Oxford University Press, copyright 2014.
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Similar to other disease pathways, promise of the application of
the CRISPR-Cas9 system to generate zebrafish knock-in and
knock-out mutations is now set to rapidly expand the
availability of transgenic models for drug discovery for
neurological diseases and disorders.122

■ OCULAR TOXICITY

The vertebrate eye is highly conserved;123 thus, zebrafish offer
an excellent model for studying ocular toxicity. Besides obvious
anatomical similarities, including the cornea, lens, choroid, and
retina as well as vascularization and innervation, the zebrafish
and human eye have conserved gene expression, cellular
makeup, and tissue architecture.124,125

Vision develops rapidly in zebrafish embryos, demonstrated
by the reliance of 4 dpf larvae on visual cues for predation and
evasive behavior.126 Primary retinal cell types are organized
into recognizable layers, and the optic tectum is innervated by
axons from the ganglion layer by 3 dpf.127 Homologous retinal
layers and cell types are found in zebrafish for all mammalian
counterparts;127−129 these include the nerve fiber, ganglion,
inner and outer plexiform, inner and outer nuclear, photo-
receptor, and the pigmented epithelium.127,129 Zebrafish are
diurnal and have color vision owing to a cone-dense retina, like
that of humans; comparatively, rats and mice have relatively
fewer cones and weak color vision.128

Even though the zebrafish retina is cone-dense, they lack a
fovea, or a cone-concentrated area. Some other differences in
zebrafish compared to mammalian retinas are that there are
more cones than rods in zebrafish retinas, and they have cones
that are sensitive to ultraviolet radiation as well as double
cones that consist of a red-sensitive (principle) compartment
and a green-sensitive (accessory) compartment.129 A key
difference pertaining to the use of zebrafish as a model of
toxicity is that the zebrafish retina (larval and adult) can
regenerate. Retinal progenitor cells with the capacity to
differentiate into any of the primary retinal neurons are
derived from dividing Müller glial cells in response to tissue
injury.130

Overall, the zebrafish retina is vascularized similarly to that
of mammals, but there are some differences. Like mammals,
angiogenesis from a central retinal artery forms the vasculature.
And, initially, hyaloid vasculature is found in the lens but
diminishes with age. The ganglion cell layer is vascularized
throughout adulthood.131 However, unlike mature mammalian
retinal vascularization, the inner and outer plexiform layers of
the zebrafish retina are not vascularized. It has been proposed
that less vascularization is needed for the thinner zebrafish

retina, because it can rely on diffusion from surface vessels
(hyaloid, choroid).131

Given the above-mentioned similarities between zebrafish
and mammalian eyes, it is no surprise that several investigators
have evaluated zebrafish as a model to interrogate
pharmaceutical ocular toxicities. These studies have demon-
strated concordance between results from zebrafish vision
assays and human ocular reactions to drugs,132−134 including
chlorpromazine, cisplatin, gentamicin, quinine, deferoxamine,
minoxidil, thioridazine, and vardenafil, among others. By
testing drugs with no established human ocular effects as
well as the oculartoxic drugs, those authors reported that the
zebrafish assays were sensitive 68−83% of the time and specific
75−100% of the time, demonstrating utility for detecting
oculartoxic chemicals. The optokinetic135,136 and optomotor
response137 assays are two common ways to evaluate vision in
adult and larval zebrafish. In the optokinetic assay, dark and
light alternating vertical stripes are passed around an
immobilized fish, and eye saccades are counted as an indicator
of a healthy eye response to moving stimuli; in the optomotor
assay, the fish are free swimming and allowed to respond to
temporal or spatial changes in light. This latter assay often uses
a second, comparator, stimulus (sound or touch) to assess
general mobility. Both assays typically rely on video recording
to help assess response. Recently, zebrafish larvae were used for
detecting retinal toxicity in pharmaceutical pipeline discovery
compounds, replacing studies in mammalian models85 and
demonstrating clear value from zebrafish for drug discovery
toxicology (Figure 5).

■ INTESTINE, PANCREAS, AND HEPATOBILIARY
TOXICITY

The postesophageal digestive system in zebrafish consists of
the intestine, pancreas, liver, and gall bladder. Among these
organs, there are similarities and differences between zebrafish
and mammals that should be considered when planning studies
with, and analyzing results from, zebrafish. Numerous reports
have highlighted the utility of zebrafish for interrogating drug
toxicities on the digestive system.

Intestine. Zebafish are agastric throughout their lives, but
the anterior portion of the intestine, referred to as the intestinal
bulb, has an enlarged lumen compared to the rest of the
intestine and can act as a food reservoir; however, the intestinal
bulb lacks gastric glands and thus has a neutral pH.138 Other
similarities and differences concerning intestinal anatomy and
physiology are reviewed in Brugman.139 Important similarities
for drug toxicology are that, like mammals, intestinal

Figure 6. Fluorescent food transit can be detected and measured as a loss of signal over time from microscopic imaging (left) or, in a high-
throughput fashion, from a corresponding gain in signal by plate-based spectrophotometry (right). The latter method allows the measurement of
intestinal transit from dozens of larvae simultaneously in a microwell plate. Modified with permission from ref 143 and Elsevier, copyright 2015.
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movement relies on smooth muscles controlled by the enteric
nervous system140 and that the intestine consists of an
epithelium containing villi, enterocytes, goblet cells, and
enteroendocrine cells. The epithelial cell maturation, differ-
entiation, and turnover are like those of mammals.141 The key
differences between zebrafish and mammalian intestines lie in
the absence of structures or cell types in zebrafish. Missing
from zebrafish are intestinal crypts, Peyer’s patches, Paneth
cells, and a submucosal layer; smooth muscles connect directly
to the mucosal layer.139

Zebrafish have been used extensively to model intestinal
disorders, including investigations into microbiome influences,
congenital disorders, intestinal inflammation, enteric nervous
system/motility disorders, and intestinal tumorigenesis.142

Methods for imaging gut movement and measuring gut transit
time in zebrafish have been recently improved143,144 allowing
for higher sensitivity and throughput for toxicology (Figure 6).
However, reports demonstrating the use of zebrafish for
detecting potential intestinal toxicities from compounds in
drug development are uncommon. Two reports, focused on
assessing the predictive value of zebrafish for intestinal/gut
toxicities, have been published. Those reports132,143 tested
marketed drugs with and without GI effects in humans for
effects on zebrafish gut contractility or transit time,
respectively. Gut contractility was reportedly highly variable
among the larval fish tested. This variability may have been
caused by the poor/inconsistent bioavailability of some of the
drugs, according to the authors. The gut transit time was also
highly variable; however, by testing more (up to 24) larvae per
treatment group, the sensitivity of the assay was improved.
Both reports indicate that false negative results (i.e., no toxicity
detected, where it was expected) are more common than false
positive results. This may be due to low absorption for some
compounds but also may be driven by the lack of certain cell
types/structures in the zebrafish intestine or the agastric nature
of the model. However, as a first-tier screen for intestinal
toxicities, based on these reports, the zebrafish would be
expected to identify >50% of toxic discovery compounds,
allowing for prioritization of safer compounds for mammalian
testing.
Pancreas. The basic structure and function of the pancreas

is conserved between zebrafish and mammals. An exocrine
compartment secretes enzymes into the digestive tract, and an
endocrine compartment produces insulin, glucagon, somatos-
tatin, and ghrelin. Polypeptide-producing cells (PP cells) have
not been positively identified in zebrafish pancreas.145 Most
studies on pancreas using zebrafish have focused on the
endocrine compartment, examining islet damage/protection
for the sake of diabetes research.146 As an indicator of potential
to translate chemical toxicity in the zebrafish pancreas to
mammalian models/humans, these studies use challenge
chemicals to damage zebrafish islets that are commonly used
in mammalian models to drive the same ends.147−150 Reports
on the chemical toxicity of zebrafish exocrine pancreas are
focused on embryo developmental toxicity driven by environ-
mental contaminants;151,152 these are being used to expose
sensitivities of the developing pancreas to common environ-
mental pollutants as well as to shed light on cellular
mechanisms involved in those toxicities.
Liver. Drug-induced liver injury (DILI) is a major concern

in the drug development industry.153,154 The most common
assays for hepatotoxicity testing in drug development use
human hepatocytes or HepG2 cells in culture. Two-dimen-

sional (2D) and 3D in vitro human tissue models, including
multiple cell types, are becoming popular, as they may more
closely reflect what happens in the whole organ.155 The
zebrafish liver performs the same functions as those of the
human liver156 and is fully functional 5 days post fertilization,
so larval zebrafish can be used to interrogate xenobiotics for
hepatotoxicity in an in vitro format, providing whole organ/
whole animal data from multiwell plates.157 Gene expression
analysis after exposure to established human hepatotoxins
revealed similar gene changes among in vitro models (human
hepatocytes, mouse hepatocytes, rat hepatocytes, and zebrafish
embryos) and in vivo models (mouse liver, rat liver, and
zebrafish embryos), highlighting that zebrafish embryos have in
vitro- and in vivo-like properties.158 As reported to date, there
is good overlap in the metabolic capacity of the zebrafish liver
and that of humans.159,160 The common metabolic pathways
indicate a potential to predict hepatotoxic metabolites using
zebrafish. The tissue architecture of the zebrafish liver differs
from mammalian livers in that it is less organized, but it
contains all the same cell types.156,160,161 In zebrafish,
hepatocytes are arranged in tubules, rather than bilayered
plates, as in mammals. Small bile ducts are found within the
hepatocyte tubules, and these function to transfer bile to the
gall bladder.161,162

Based on the biological similarities given above, and the
relative ease for whole liver toxicology, the zebrafish offers an
attractive model.163 Fluorescent markers for various cell types
make it possible to visualize and quantify cell-specific
compound effects in the zebrafish liver in real-time.156,164,165

More simpler techniques employ lipid stains, like oil-red-O, to
visualize gross liver changes in the larval zebrafish.166 A study
conducted by two major pharmaceutical companies demon-
strated added predictive value from zebrafish liver toxicity
assays for predicting DILI when they were used in conjunction
with high-content cellular (hepatocyte) toxicity assays.167

Other studies have also shown congruence between zebrafish
and human DILI using marketed drugs with known
hepatotoxicity, like tetracycline, aspirin, erythromycin, cyclo-
sporin A, amiodarone, and acetaminophen.25,27,158,168,169

Zebrafish have delivered popular models for demonstrating,
or investigating mechanisms of, the hepatotoxicity from
traditional medicines170−172 and environmental contaminants,
including those of pharmaceutical173−175 and of other
industrial origin.176−178 In addition to these applications,
zebrafish hepatotoxicity assays are being directly employed in
early drug discovery toxicology. Evidence for this can be found
in recent reports on studies designed to discover liver-
protective compounds against known hepatotoxins,179 improve
formulations or therapeutic indices for promising chemo-
therapies,180,181 and demonstrate novel compound efficacy in a
zebrafish autoimmune disease model, which was coupled with
an assessment of hepatotoxicity.182

Gall Bladder. Lipophilic dyes can be used to visualize both
lipid metabolism and transport in vivo in larval zebrafish.183

Lipid uptake, enzymatic metabolism, and transport in zebrafish
have high homology to the human processes.184 Recent efforts
at AbbVie have focused on using the reporter dye, PED6 (N-
([6-(2,4-dinitro-phenyl)amino]hexanoyl)-1-palmitoyl-2-BOD-
IPY-FLpentanoyl-sn-glycerol-3-phosphoethanolamine)183 to
monitor for biliary toxicities from internal discovery com-
pounds in zebrafish. PED6, as well as fluorescent transgenic
zebrafish expressing reporter tags in gall bladder cells, have
been used to identify biliary toxins and their mecha-
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nisms.185−188 Although there appear to be no reports yet on
the use of zebrafish for early drug discovery biliary toxicity, the
utility is evident, and this is likely an underutilized application
of the model.

■ NEPHROTOXICITY

The kidney is especially vulnerable to xenobiotic toxicity,
because its function to remove toxic molecules from circulation
relies on higher blood exposure than other organs. Thus,
monitoring biomarkers that track kidney failure and kidney
histology are primary end points in preclinical toxicology.189

Based on tractability of zebrafish larvae for research into
vertebrate biology, they have recently been used to model
kidney disease or nephrotoxicity.190−193

The higher complexity of the mammalian kidney compared
to that of zebrafish renders comprehensive modeling of kidney
toxicity in zebrafish unpractical. However, nephrotoxicity can
be reasonably interrogated with this model. The zebrafish
larval pronephros has a simpler anatomy than that of the
mammalian metanephros; it consists of only two nephrons
with fused glomeruli. Despite the simple anatomy, similarities
between the cellular constitution and function of the zebrafish
pronephros and those of the mammalian metanephros make
the zebrafish attractive. The zebrafish glomerulus contains
fenestrated capillary endothelial cells and podocytes. Also,
polarized epithelial cells with primary cilia line the nephron
tubules, which are segmented into specialized regions for
differential secretion from, and reabsorption into, the blood.194

Several investigators have demonstrated proof-of-concept
that larval zebrafish can be used to monitor for drug-induced
nephrotoxicity. Treatment with puromycin or knockdown of
either CD2-associated protein or podicin caused effacement of
podocytes and proteinuria;195 these authors also introduced a
fluorescent tracer (FITC-labeled 70 kDa dextran) for live
quantification of podocyte failure. More recently, electron
microscopy was used to visualize the glomerular injury induced
by puromycin in larval zebrafish.196 Three drugs known to
cause tubulopathy in humans (paracetamol, gentamicin, and
tenofovir) were shown to induce functional, morphological,
and histopathological kidney changes in zebrafish larvae.192

Metabolic changes in biomarkers (purines, glutathione, and
amino acids) associated with acute kidney injury were detected
in larval zebrafish exposed to those same three drugs.197

Beyond proof-of-concept for detecting nephrotoxicity, the
larval zebrafish are being used in phenotypic screens to
discover compounds with a potential to repair acute kidney
injury.198

■ ENDOCRINE TOXICITY

The activity of the endocrine system in vertebrates is mostly
controlled by the hypothalamic−pituitary axis. The hypothal-
amus controls the activity of the adenohypophyseal through
the release of neuroendocrine peptides, to which adenohypo-
physeal cells respond by secretion of specific hormones to
evoke peripheral organ responses.199 Although their regulation
and effects are tightly interconnected, the hypothalamic−
pituitary axis can be functionally subdivided into the
hypothalamic−pituitary−adrenal (HPA) axis, related mainly
with stress and immune responses; the hypothalamic−
pituitary−thyroid (HPT) axis, correlated with metabolism;
and the hypothalamic−pituitary−gonadal (HPG) axis, related
to reproduction.200

The structure and function of the endocrine system are
strongly conserved among vertebrates, even if some differences
can be observed between humans and zebrafish.201 Terrestrial
vertebrates present a hypothalamic−pituitary portal system.
Consequently, neuroendocrine peptides produced in the
hypothalamus are secreted to the blood vessels and reach the
adenohypophysis through the bloodstream. In contrast, in
zebrafish, no hypothalamic−pituitary portal system is present,
and the neurosecretory fibers enter the pituitary and release
their hormones directly onto the adenohypophyseal cells.202

Similarly, zebrafish lack a distinctive adrenal gland but present
a functionally comparable interrenal gland. This organ has no
separation between the adrenal cortex and the medulla,
containing both steroidogenic and chromaffin cells.201 Never-
theless, development of the steroidogenic cell lineage is well-
conserved. For instance, both mammalian NR5A1 and its
zebrafish homologue nr5a1a are essential for adrenal and
interrenal gland development, respectively,203,204 as well as for
activation of the side-chain cleavage enzyme cyp11a1, which is
the rate-limiting enzyme in steroid biosynthesis.205

Most of the endocrine system in zebrafish develops during
the first 5 dpf.201 Pituitary hormone gene expression starts at
48 hpf.206 Estrogen receptors are already present at 24 hpf,207

and aromatase gene expression, coding for the enzyme that
catalyzes the biosynthesis of estrogens from precursor
androgens on the brain, can be detected from 24 hpf.208 Key
steroidogenic gene expression of the interrenal organ originates
at 2 dpf.209 Thyroxin production of the thyroid gland starts at
3 dpf.210

Endocrine-disrupting chemicals (EDCs) are of high
relevance for human and wildlife health, since endocrine
signaling controls many essential physiological processes that
impact the individual’s health, such as growth and develop-
ment, stress response, and ultimately reproduction and
population development.201 Studies on endocrine disruption
in fish have focused mainly on the estrogen, androgen, thyroid,
and steroidogenesis (EATS) pathways, in the context of
environmental risk assessment of new chemical substances.211

Specific chemical biomarkers can be measured in zebrafish
to screen for the endocrine activity of xenobiotics. For
instance, one of the most commonly assessed responses is
the induction of vitellogenin (vtg), an egg-yolk protein
precursor produced in the liver and induced by estrogenic
exposure.211 VTG is strongly induced after exposure to 10 ng/
L of ethinylestradiol.212 In the same way, other markers related
to endocrine activity such as thyroidal213,214 or steroidal
hormones215 may be of interest but not amenable to high-
throughput assays.
Gene expression analysis has been a useful method to

identify specific pathways involved in the biological effects of
EDC on zebrafish embryos. For instance, exposure to fadrozole
led to a downregulation of vitellogenin (vtg) and brain
aromatase (cyp19a1b) transcript levels in 96 hpf embryos.216

This key event produced an apical adverse effect of the sex
ratio shifting toward male during sexual differentiation,
indicating that the existing adverse outcome pathway (AOP)
for aromatase inhibition in fish can be translated to the life-
stage of sexual differentiation. A microarray study demon-
strated the compensatory induction of androgen-pathway-
related genes, sult2st3 and cyp2k22, after exposure to steroidal
hormones.217 In the same way, expression of HPT axis-related
marker genes thyroperoxidase (tpo), transthyretin (ttr),
thyroid receptor α (trα), and deiodinase 2 (dio2) were altered
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in zebrafish embryos after exposure to perfluorinated
compounds,218 polybrominated diphenyl ethers (PBDEs),219

and triazole fungicides,220 all well-established human endo-
crine disruptors.221,222

Multiple fluorescent reporter lines have been developed for
testing of xenobiotics for endocrine activity. The EASZY assay
makes use of the tg(cyp19a1b-GFP) transgenic zebrafish line
to screen for estrogen active substances. This line expresses
GFP in a concentration-dependent manner under the control
of the gene encoding for the cyp19a1b brain aromatase.223 The
model is highly sensitive to natural estrogens such as E2 (17ß-
estradiol) as well as synthetic estrogens such as 17a-
ethinylestradiol or diethylstilbestrol at nanomolar concen-
trations. The EASZY assay has been recently used to monitor
estrogenic activities of waste and surface waters sampled across
Europe.224 Another estrogen-responsive model was developed
in a pigment-free “Casper” phenotype to identify the specific
target tissues and quantify the response in whole fish.225 In the
same way, different reporter lines for thyroid226,227 and
glucocorticoid228 pathways are available. Those reporter lines
are fast and cost-effective methods for the detection of the
endocrine activity of xenobiotics and hence have considerable
potential for both a high-content and high-throughput screen
of endocrine disruptors.27

■ HEMATOLOGIC TOXICITY

Zebrafish have many blood cell types that are consistent with
human peripheral blood cells. This includes red blood cells,
neutrophils, monocytes, macrophages, T and B cells, and
dendritic cells. The equivalent of a platelet is the thrombocyte.
Reporters for each of these lineages have been generated as
tissue-specific promoters driving fluorescent proteins. It is
therefore possible to visualize all the blood cell types in
different colors and evaluate toxicity.
Zebrafish hematopoietic stem cells have been discovered

based on GFP reporters.229 It is possible to transplant the cells
into irradiated adult fish, and the graft shows long-term
stability for more than a year. There are many studies
evaluating the trafficking of blood stem cells and their
developmental biology. Most of the processes are conserved
with those of humans.
A number of zebrafish mutants exist that represent

hematologic disorders. In the original screen, there were 26
mutant complementation groups, and five of those genes
proved to be novel genes, which later became associated with
human diseases.230 It is possible to use zebrafish models and
undertake genetic or chemical suppressor screens. This would
potentially lead to novel therapeutics.
A few studies on hematologic toxicology have been

undertaken using zebrafish. The hematopoietic system can be
assayed in many ways.231 Using a double transgenic fish that
has a GATA-1 promoter driving dsRED and globin LCR
driving GFP, the stages of erythroid development can be
studied.232 Adding drugs of the phenyl hydrazine family leads
to lysis specifically of the mature red blood cells. This
establishes a facile system for the evaluation of toxicity of
chemicals and drugs.

■ CARDIOVASCULAR TOXICITY

Cardiovascular physiology is conserved between humans and
zebrafish at anatomical, cellular, and membrane-biology levels.
Zebrafish have been shown to provide a good model for

cardiotoxicity. Many human cardiovascular drugs have shown
comparable effects on zebrafish physiology,233 and numerous
human cardiovascular disorders have been recapitulated in
zebrafish genetic models.234 Systematic studies of drugs that
cause QT prolongation in humans show a >95% conservation
of effect in zebrafish.45 QT prolongation is a common
cardiotoxicity discovered during new drug development.
Milan et al.235 developed an automated, high-throughput

assay for bradycardia in zebrafish embryos, which was shown to
correlate with QT prolongation in humans. They tested 100
compounds in the assay and showed that 22 of 23 drugs
known to cause QT prolongation in humans cause bradycardia
in zebrafish. In addition, the assay was able to detect drug−
drug interactions that lead to QT prolongation, such as the
well-known synergistic interactions between erythromycin and
cisapride and between cimetidine and terfenadine. These
interactions result from the physiological effects of one
compound influencing the metabolism of the second
compound and can only be detected in a whole organism.
These results highlight the value of performing toxicity studies
in zebrafishzebrafish assays can achieve the scale and
throughput of in vitro assays, but they occur in a relevant
physiological setting, in which complex pharmacokinetic and
pharmacodynamic processes remain intact.60 In early work, it
was possible to show that more than 90% of drugs that cause
repolarization toxicity in humans result in cognate electro-
physiological effects in the zebrafish even as early as 48 hpf.
Based on those data from 100 drugs, the specificity for
reporting on repolarization toxicity in humans was 76%; the
sensitivity was 80%, which increased to 96% when poorly
absorbed drugs were injected.235

Letamendia et al.236 also showed how zebrafish is a model
amenable for the automation of cardiotoxicity screenings. They
developed an automated high-throughput platform for in vivo
chemical screening on zebrafish embryos that includes
automated methods for embryo dispensation, compound
delivery, incubation, imaging, and analysis of the results. A
validation of this platform with known positive and negative
compounds was successfully carried out based on the rationale
of compounds inhibiting the zERG channel, similar to the
hERG channel in humans. This produces a 2:1 atrio:ventricular
arrhythmia that resembles the QT prolongation in humans.
In vitro hERG binding and patchclamp assays are accepted

by both the pharmaceutical industry and regulatory bodies as
suitable methods for investigating the potential of compounds
to cause QT prolongation. However, these assays only measure
the affinity of compounds for the hERG channel. By
comparison, the distinctive 2:1 atrial:ventricular arrhythmia
observed in larval zebrafish can be used to identify compounds
that block not only the ERG channel but also other cardiac ion
channels. While this could be argued as advantageous, because
the zebrafish assay can identify cardiotoxicity arising from the
blockage of myriad ion channels, it raises problems when
investigators attempt to compare their results with those from
single target in vitro assays. Data indicating cardiotoxic effects
in zebrafish from compounds that are apparently safe
according to in vitro data sets might be interpreted as false
positive results from the zebrafish; however, they may be
caused by the compound acting on a target not represented in
in vitro models.237

Moreover, zebrafish can regenerate heart muscle. Several
research groups are working to discover factors involved in this
process to help develop methods of repairing heart tissue in
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humans. One group revealed the role of TGFβ signaling in the
regenerative capacity of the zebrafish heart after myocardial
infarction using a cryoinjury procedure.238 Understanding the
key healing processes after myocardial infarction in zebrafish
may result in identification of the barriers to efficient cardiac
regeneration in mammals and enable the design of novel
therapeutic strategies for improved regeneration of the
infarcted mammalian heart.

■ OTOTOXICITY
Drug-induced ototoxicity is often reversible but sometimes is
not, leading to a severe impact on the quality of life for patients
faced with no alternative treatment, as is with aminoglycosides
for life-threatening infection and cisplatin for cancer.239

Screening for ototoxicity in mammalian preclinical models is
very difficult, and given few regulatory requirements, this is
rarely done.240 A zebrafish model for ototoxicity may fill this
gap in preclinical safety testing. Zebrafish and human auditory
systems most likely share an evolutionary origin with those of
all vertebrates. This is indicated by homologous hair cell
physiology,241,242 similar auditory anatomy, and neuronal
signaling243 and is further supported by apparently conserved
genetic regulation.244−246 A large part of our understanding of
the genetics of human hearing and balance has come from
studies with zebrafish.247−249

The zebrafish ear is composed of three semicircular canals
arranged orthogonally to one another for sensing the direction
and the speed of movement. It also contains two otoliths that
help transmit vibrations to associated maculae (the utricular
macula for sensing balance and the saccular macula for
hearing) and a third macula (lagenar) that has both balance
and hearing functions; these work together to stimulate
anterior, posterior, and lateral cristae containing hair cells,
which transduce signals to the brain.250−252 This parallels the
basic anatomy and physiology of the mammalian inner
ear245,250,253 except that there is no cochlea in zebrafish.
Zebrafish lack homologous structures for the mammalian outer
ear (visible part), middle ear (ear drum and tympanic bones),
and cochlea. The cochlea, in mammals, helps to amplify
sounds.254 Sound amplification in zebrafish is accomplished via
the Weberian apparatus, a series of bones which convey
vibrations from the resonant and relatively large swim bladder
to the lagenar macula in the ear.252

Sound is transmitted to the brain via mechanosensory hair
cells.241 In zebrafish, these cells are either bathed in the
endolymph of the ear or positioned along the lateral line
system, which is a series of neuromasts (bundles of hair cells),
located on, or near, the body surface in canals, for sensing
water flow changes.255,256 Hair cells transduce sound (or
water) waves into electrical nerve signals and transmit them to
the brain through associated afferent nerve endings.242,257,258

The synapses between vertebrate hair cells and neurons are
highly specialized to allow fast transduction of mechanical
stimulation.259 Most hearing loss in humans (90%) stems from
a loss of function during this transition and is referred to as
sensorineural hearing loss.260 Zebrafish and human hair cells
are homologous at the cellular and molecular levels and
synapse in the same way with afferent neurons.257,258,261

Recent research has exposed a plethora of shared genetic
involvement in hearing, comparing zebrafish to hu-
mans,244,246,248,262−267 including proof-of-concept that gene
knock-out studies in zebrafish can identify genes that cause
nonsyndromic deafness in humans.249

Hair cell functionality is well-developed in zebrafish in
advance of 5 dpf, as demonstrated by tests for auditory and
somatosensory responses.252,268,269 The superficial location of
hair cells in zebrafish allows for the ability to monitor hair cell
changes in vivo in a high-throughput manner. This has made
zebrafish a very popular model for ototoxicity interrogation
and protection.247 Many drugs that are ototoxic to humans are
ototoxic to developing, larval, and adult zebrafish; these
include aminoglycoside antibiotics, carbonic anhydrase inhib-
itors, platinum-based chemotherapies, and environmental
metal contaminants.247,270−272 These data indicate that this
model is a promising tool to screen novel chemical entities for
ototoxicity.
Several screening platforms were recently tested and proven

useful for detecting hair cell damage.273−279 Using platforms
such as these, many potentially protective cotreatments have
been discovered in zebrafish that may mitigate human
ototoxicity of useful, and yet unimproved, therapeutics. Some
methods, through live imaging and forward genetic screens,
can provide insight into the chemical and genetic mechanisms
of ototoxicity as well as information about whether a protective
cotreatment interferes with the therapy.280 The following are
some examples of protective cotreatments discovered using
this model: for radiotherapy for head and neck cancer, p38
inhibition;281 to mitigate cisplatin-induced ototoxiticy, quer-
cetin,282 curcuminoids,283 CDK2 inhibition,284 or sirtuin 1
activation;285 for neomycin ototoxicity, melatonin,286 astax-
anthin nanoemulsion;287 and recently discovered potential
aminoglycoside-protective cotreatments.55,288 The latter work
resulted in repurposing a preapproved drug into clinical trials
for aminoglycoside protection, demonstrating the utility for
zebrafish to help advance discoveries that circumvent human
ototoxicity.

■ PINEAL/CIRCADIAN RHYTHM
Sleep disturbances are induced by many classes of
pharmaceuticals, including beta-blockers, benzodiazepines,
opioids, and amphetamines. Understanding the nature and
severity of the sleep disturbance is necessary to assess the drug
safety; for instance, reduced sleep is detrimental to human
health and can contribute to diabetes, hormonal deficiencies,
and neurological disorders. Impacts on sleep may be desirable
for sleep aids and acceptable for severe indications such as
cancer but unacceptable for drugs to treat less severe
conditions; in any case, understanding effects on sleep early
in the development process is important.
In zebrafish, sleep/wake behavior based on locomotor

activity can be easily determined in a high-throughput
manner.289 An advantage of the diurnal zebrafish over
nocturnal rodent models is the greater similarity of sleep
regulation to other diurnal vertebrates including humans. In
both zebrafish and humans, melatonin production by the
pineal organ (Figure 7) regulates the circadian regulation of
sleep, downstream of the light-entrained circadian clock.290

The hypothalamic hypocretinergic system is also conserved
between zebrafish and mammals.291 Clinically used hypnotics
and stimulants have similar effects on the sleep/wake cycle in
zebrafish as they do in humans, further demonstrating the
translatability of effects on sleep/wake behavior,292 with
occasional exceptions, e.g., dopamine D1 agonists, which
increase rest in zebrafish but wakefulness in mammals.289

Zebrafish larvae have been successfully used for identifying
previously unappreciated effects of pharmaceuticals with
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known targets on sleep/wake behavior, indicating the utility of
this system for identifying potential sleep-disturbing effects of
new pharmaceuticals in preclinical screening.289 Moreover,
using fine-grained analysis of locomotor behavior in combina-
tion with the statistical power available with zebrafish,
relatively subtle effects on sleep/wake behavior can be teased
out292 and then confirmed in other preclinical models such as
cynomolgus monkeys with telemetered polysomnography.293

■ LATEST ADVANCES AND FUTURE DIRECTION
In general, zebrafish are a useful tool for pharmaceutical
toxicity testing based on the evidence for translatable
toxicology from zebrafish to mammals and augmented by the
tractable nature of zebrafish for testing a wide spectrum of
toxicities. New and innovative applications of zebrafish in
relation to pharmaceutical toxicology appear regularly in the
literature. These include studies interrogating toxic mecha-
nisms, adverse outcome pathways (AOPs), drug abuse liability,
endocrine disruption, as well as pertinent studies around
metabolism, bioavailability, transcriptomics, and proteomics.
Mechanistic evidence can be used as a key to help escape

toxicities that are encountered during new drug development.
The mechanism through which toxicity is enacted can be
driven through the therapeutic target (on-target toxicity) or
another protein/molecule (off-target). Also, the precise
molecular interaction between a xenobiotic and the therapeutic
target may drive the desired therapeutic effect and a toxic effect
based on the site and nature of the interaction. Knowledge
about the toxic mechanism can help guide structure−activity
relationship (SAR) studies and allow for faster discovery of less
toxic drug candidates. The concept of using zebrafish for
interrogating toxic mechanisms of environmental pollutants is
not new,294,295 and in that arena, publications have steadily
grown over the past 10 years to about 300 per year. Although

the application of zebrafish in pharmaceutical toxicity
mechanism studies296,297 has lagged, the numbers have
recently begun to grow (Figure 8) to nearly 100 per year.

The pharmaceutical mechanism studies have revealed cell
types, pathways, and genes involved in cardiovascular,298,299

neuromuscular,300 neuronal,301−303 ocular,85 audi-
tory,55,281−288 and embryo-development304−307 toxicities.
Those same studies introduce models by which safer
compounds can be discovered by conducting SAR within or
around a chemical series as has been lately shown for several
chemotherapies.308−311 Equally important, those models can
be used to interrogate species-specific mechanisms of toxicities,
which is of great value for predicting clinical toxicity. For
example, promising immunomodulatory (IMiDS) chemo-
therapies, thalidomide, lenalidomide, and pomalidomide, all
have teratogenic properties but with different potencies,
depending on the species. Recent studies including knockdown
and transgene expression in zebrafish, mice, and human stem
cells312−314 have shed light on the mechanisms and molecular
players that make a developing embryo sensitive or insensitive
to those drugs.
Recently, mechanistic studies using zebrafish have discov-

ered personalized therapies for rare genetic diseases. Full
exome next generation sequencing and refined gene editing
tools combined with a rapidly developing tiny vertebrate with
strong genetic homology to humans creates a proving ground
for repurposing drugs to cure, or suppress symptoms of, life-
threatening diseases.315 After patient-specific rare alleles are
discovered, they are engineered into the genome of zebrafish,
and if disease symptoms are recapitulated, a high-throughput
platform is created for discovering personal therapies. More-
over, these models can deliver novel insight about mechanisms
through which rare diseases are manifested and may lend
themselves to our understanding of more common diseases.316

Rare diseases for which therapies have been discovered using
zebrafish include pediatric diseases involving the following
systems: musculoskeletal, blood, endocrine, neuronal, genito-
urinary, lymphatic, congenital malformations,52,317 and can-
cer.318 In this new application of zebrafish lies great potential
for a positive impact on human health and medicine.
The impact of industrial waste on the environment is a

growing concern keeping pace with the growing human
population, and pharmaceutical waste is a major component of
that pollution. Ecopharmacology is a new field that is

Figure 7. Photoreceptive pineal organ of a 4 dpf larval zebrafish,
medially located in the forebrain (top of image = rostral). Nuclei are
blue (DAPI), cone photoreceptors are red (antiarrestin 3a antibody),
and rod photoreceptors are green (antirhodopsin antibody).
Previously unpublished, provided by J. Gamse. Photo credit: Joshua
Clanton.

Figure 8. Number of publications reported from PubMed using
search phrases “zebrafish (environmental or pharmaceutical) toxicity
mechanism of action”.
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concerned with the presence, persistence, and effects of parent
drugs and metabolites in/on the environment.319 Pharmaceut-
ical waste enters the environment through three ways; patient
excretion, improper disposal, and manufacturing discharge.
Pharmaceutical pollution is especially dangerous to life,
because drugs are designed to be biologically active; therefore,
all life forms are potentially at risk of being harmed or changed
by this type of waste. Some ecopharmacological findings are
microbial drug resistance, gene expression changes, epigenetic
effects, genotoxicity, carcinogenicity, endocrine and immune
disruption, and biofilm formation.
Environmental risk assessment is requested of all new drug

products marketed for human consumption by the U.S. Food
and Drug Administration and the European Medicines Agency.
Those assessments compare the predicted environmental
concentration to the acute toxic potency of the new drug on
various species, which can include an algal species, an aquatic
invertebrate, and fish. Zebrafish are being used regularly in
those studies due to the ease of raising them in a laboratory
environment.320 Increasing awareness of compounded chem-
ical mixture effects on biological systems321−323 and recent
discoveries of effects of endocrine-disrupting chemicals in the
environment324−327 are heralding times for different and more
detailed interrogation into potential environmental impact of
new drugs.328 Recent zebrafish work that is pioneering the way
toward such ends includes studies on transcriptom-
ics,321,329−331 chemical mixture effects,322,332 lipid metabo-
lism,333,334 reproduction,335 and development.336

When evaluating drug safety, attention is frequently directed
toward identifying cellular and organ toxicities, but there are
important safety considerations that go well beyond toxicity.
Prominent among these is the potential for drug abuse liability.
As the current opioid abuse epidemic highlights, highly
efficacious and relatively nontoxic medications can be unsafe
if they exhibit potential for abuse. Testing drug candidates for
abuse liability remains expensive and time-consuming because
of the complexity of the rat and primate models used.
Published reports offer some hope that zebrafish could be
developed as a model for testing drug abuse liability, thereby
enabling screening for abuse liability earlier, more efficiently,
and on a larger scale. The earliest demonstration of zebrafish
responsiveness to a drug of abuse was by Darland et al., who
demonstrated that zebrafish conditioned place preference for
cocaine almost 2 decades ago.337 Since then, several non-
contingent (passive) behavioral assays have demonstrated
zebrafish conditioning to opioids, amphetamines, alcohol,
nicotine, and other drugs with abuse liability.338−344 More
recently, contingent models such as an opioid self-admin-
istration model have been developed for zebrafish.345 In this
model, zebrafish can be conditioned in as few as 5 days to self-
administer opioids, and their motivation to seek additional
doses can be quantified. Because zebrafish perform so well in
both noncontingent and contingent models of drug seeking, it
may be possible in the future to use zebrafish to test new drugs
for their abuse liability.

■ CONCLUSION
Zebrafish can be used to assess the toxicity of drug candidates
in early screening assays, sometimes in a high-throughput
manner. Due to their small size and transparency, such testing
requires a small mass of test article, very little lab space, and
data can be collected noninvasively over time in vivo. These
data can help prioritize safer compounds for mammalian

testing, disclose mechanisms of toxicity, and identify
cotherapies that may mitigate toxicity of promising therapeu-
tics. Employed to interrogate xenobiotics around which
evidence points to conserved vertebrate biology, zebrafish
toxicity assays can quickly and easily provide translatable data
on a spectrum of tissues, organs, and systems.
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